MEMO-081: Graph Implementation Readiness Assessment
Status: Draft Author: Platform Team Created: 2025-11-16 Updated: 2025-11-16
Executive Summary
This memo assesses the prism-data-layer's readiness to implement the massive-scale graph features defined in RFC-057 through RFC-061. After analyzing the five graph RFCs against the current prism-data-layer codebase, I've identified critical foundational gaps that must be addressed before graph implementation can proceed.
Bottom Line: The prism-data-layer currently lacks the fundamental infrastructure needed for 100B-scale graph operations. We need to implement 15 foundational components across 4 phases before we can begin graph feature development.
Timeline: 16-20 weeks of foundational work before graph implementation can begin.
Risk: Attempting to implement graph features without these foundations will result in unbuildable prototypes and architectural debt.
RFC Requirements Summary
RFC-057: Massive-Scale Graph Sharding (100B Vertices)
Core Requirements:
- Three-tier hierarchical sharding (cluster → proxy → partition)
- Support for 1000+ lightweight compute nodes
- 64 partitions per proxy (16,000 partitions cluster-wide)
- Vertex ID format:
{cluster_id}:{proxy_id}:{partition_id}:{local_vertex_id} - Opaque vertex ID routing tables for rebalancing flexibility
- Dynamic partition rebalancing without downtime
- 100M vertices per proxy, 1.56M vertices per partition
Scale Targets:
- 100 billion vertices
- 10 trillion edges
- 30 TB total memory across cluster
- Sub-second query latency for common traversals
RFC-058: Multi-Level Graph Indexing
Core Requirements:
- Four-tier index hierarchy (partition → proxy → cluster → global)
- Online index construction without blocking queries
- Incremental index updates via distributed WAL
- Bloom filter cascade for fast negative lookups
- Index types: hash, range, inverted, edge (outgoing/incoming)
- Index schema versioning and migration
- Partition pruning using cluster-level indexes
- Space efficiency: indexes <20% of graph data size
Performance Targets:
- Sub-millisecond index lookups
- Partition pruning: 99% reduction in queried partitions
- 20,000× speedup for property-filtered queries
RFC-059: Hot/Cold Storage with S3 Snapshot Loading
Core Requirements:
- Three-tier storage (hot: memory, warm: local SSD, cold: S3)
- Hot tier: 10-20% of data in-memory
- Cold tier: 80-90% on S3 Standard
- Multi-format snapshot support (Parquet, Protobuf, JSON Lines, HDFS, Prometheus)
- Parallel snapshot loading: 1000 workers, 210 TB in <20 minutes
- Temperature classification (hot/warm/cold/frozen)
- ML-based partition temperature prediction
- WAL replay during snapshot load for consistency
- Multi-tier caching (Varnish → CloudFront → S3 Express → Batch S3)
Cost Optimization:
- 86% cost reduction vs pure in-memory ($7M/year vs $49M/year)
- S3 request cost optimization (88.5% reduction via caching)
RFC-060: Distributed Gremlin Query Execution
Core Requirements:
- Full Apache TinkerPop Gremlin 3.x specification support
- Distributed query decomposition across 1000+ nodes
- Cost-based query optimizer with selectivity estimation
- Partition pruning via multi-level indexes
- Adaptive parallelism based on intermediate result sizes
- Result streaming without full materialization
- Query resource limits (memory, timeout, fan-out, depth)
- Super-node handling (100M+ degree vertices) with sampling
- Batch authorization for large result sets
- Distributed tracing and slow query logging
Performance Targets:
- Sub-second latency for common traversals
- 2,500× speedup via partition pruning
- 10,000× speedup for batch authorization
RFC-061: Fine-Grained Graph Authorization
Core Requirements:
- Vertex-level label-based access control (LBAC)
- Security labels on vertices:
['org:acme', 'pii', 'confidential'] - Principal clearances with hierarchical wildcard matching
- Authorization policy push-down to partition level
- Traversal filtering (auto-filter vertices during queries)
- Batch authorization using Roaring bitmaps
- Audit logging with intelligent sampling
- Compliance support (SOC 2, GDPR, HIPAA)
Performance Targets:
- <100 μs authorization overhead per vertex
- 10,000× speedup for batch authorization (1M vertices in 1.1 ms)
- 90% audit log cost reduction via sampling
Current prism-data-layer State Analysis
Existing Capabilities
What We Have:
-
Basic Graph Pattern (RFC-055):
- 1B vertex scale (not 100B)
- 10 proxy architecture (not 1000)
- In-memory MemStore backend
- Simple consistent hashing
- Basic vertex/edge CRUD operations
-
Foundational Infrastructure:
- gRPC-based proxy architecture
- Protobuf message definitions
- Basic admin protocol
- Pattern registry system
- Plugin architecture (RFC-008)
-
Development Tooling:
- Local testing infrastructure (RFC-016)
- Documentation framework
- CI/CD pipelines
Critical Gaps
I've identified 15 critical gaps across 4 phases that must be addressed before graph implementation:
Phase 1: Distributed Systems Foundations (4-6 weeks)
Gap 1.1: Hierarchical Partition Registry
What's Missing:
- No three-tier partition model (cluster → proxy → partition)
- Current consistent hashing is flat (no hierarchy)
- No partition ID format:
{cluster}:{proxy}:{partition}:{local_id} - No cluster/proxy/partition metadata storage
Required Implementation:
message ClusterTopology {
string cluster_id = 1;
repeated ProxyNode proxies = 2;
PartitionStrategy strategy = 3;
}
message ProxyNode {
string proxy_id = 1;
string cluster_id = 2;
repeated Partition partitions = 3;
int64 vertex_count = 4;
int64 memory_bytes = 5;
}
message Partition {
string partition_id = 1; // "07:0042:05"
PartitionTemperature temperature = 2;
int64 vertex_count = 3;
string storage_location = 4; // S3 path or "memory"
}
Acceptance Criteria:
- Protobuf definitions for cluster topology
- In-memory partition registry with hierarchical lookup
- Partition ID parsing:
{cluster}:{proxy}:{partition}:{local_id} - Unit tests: 1000 proxies × 64 partitions = 16,000 partitions
- Benchmark: <100ns partition ID parse time
Effort: 1-2 weeks
Gap 1.2: Distributed Routing Table for Opaque Vertex IDs
What's Missing:
- No opaque vertex ID support (currently hierarchical only)
- No distributed routing table (vertex ID → partition location)
- No routing cache with 99% hit rate
- No routing table sharding across cluster
Required Implementation:
type OpaqueVertexRouter struct {
routingTable *DistributedHashTable // 256 shards
bloomFilter *bloom.BloomFilter // Fast negative lookup
cache *RoutingCache // 1M entries, 100 MB
}
func (ovr *OpaqueVertexRouter) RouteVertex(vertexID string) (*PartitionLocation, error)
func (ovr *OpaqueVertexRouter) UpdateLocation(vertexID string, location *PartitionLocation) error
func (ovr *OpaqueVertexRouter) InvalidateCache(vertexID string) error
Acceptance Criteria:
- Distributed routing table with consistent hashing
- LRU cache with configurable size (default: 1M entries)
- Bloom filter for negative lookups (0.1% false positive rate)
- Routing table replication (3× for fault tolerance)
- Unit tests: 100M vertex ID lookups
- Benchmark: <1 μs cold lookup, <10 ns hot lookup (cached)
Effort: 2 weeks
Gap 1.3: Distributed Coordination Service
What's Missing:
- No distributed coordination (no Raft/etcd integration)
- No cluster membership management
- No partition assignment consensus
- No leader election for coordinators
Required Implementation:
- Integrate etcd or implement Raft consensus
- Cluster membership registry (proxies join/leave)
- Partition assignment coordination
- Leader election for query coordinators
Acceptance Criteria:
- etcd client integration for cluster metadata
- Cluster membership with health checks
- Partition assignment API
- Leader election for coordinators
- Failure detection and failover (<5 second recovery)
Effort: 2-3 weeks
Gap 1.4: Distributed Write-Ahead Log (WAL)
What's Missing:
- No distributed WAL (RFC-051 not implemented)
- No Kafka integration for durable writes
- No WAL consumer for multi-tier updates
- No WAL replay for consistency during snapshot load
Required Implementation:
type WALProducer struct {
kafkaProducer *kafka.Producer
topic string // "graph-wal-cluster-{cluster_id}"
partitions int // 1000 (one per proxy)
}
type WALConsumer struct {
kafkaConsumer *kafka.Consumer
groupID string
}
type WALOperation struct {
Type OperationType // CREATE_VERTEX, UPDATE_VERTEX, DELETE_VERTEX, etc.
PartitionID string
Vertex *Vertex
Edge *Edge
Timestamp int64
}
Acceptance Criteria:
- Kafka producer for WAL writes
- Kafka consumer for WAL replay
- WAL operation protobuf definitions
- WAL consumer with offset tracking
- WAL replay during partition load
- Unit tests: 10k ops/sec per partition
- Benchmark: <5 ms end-to-end WAL write latency
Effort: 2 weeks
Phase 2: Storage Tier Infrastructure (4-5 weeks)
Gap 2.1: Hot/Cold/Warm Storage Tier Management
What's Missing:
- No storage tier abstraction (only MemStore)
- No S3 integration for cold storage
- No local SSD management for warm storage
- No temperature classification for partitions
- No promotion/demotion policies
Required Implementation:
type PartitionManager struct {
hotTier *MemStore
warmTier *LocalSSD
coldTier *S3Backend
classifier *TemperatureClassifier
}
func (pm *PartitionManager) GetVertex(vertexID string) (*Vertex, error) {
// Try hot → warm → cold
}
func (pm *PartitionManager) PromotePartition(partitionID string, targetTemp PartitionTemperature) error
func (pm *PartitionManager) DemotePartition(partitionID string, targetTemp PartitionTemperature) error
Acceptance Criteria:
- Storage tier interface (hot/warm/cold)
- S3 backend client (read/write partitions)
- Local SSD backend (NVMe-optimized)
- Tier-aware vertex/edge lookup with fallback
- Temperature classification algorithm (ML-based or rule-based)
- Promotion/demotion policies with hysteresis
- Unit tests: Tier fallback chain
- Benchmark: <50 μs hot, <100 μs warm, <50 ms cold
Effort: 2-3 weeks
Gap 2.2: Snapshot Loading Infrastructure
What's Missing:
- No bulk snapshot loading (only incremental inserts)
- No Parquet/Protobuf/JSON Lines readers
- No parallel loading across 1000 workers
- No WAL replay during snapshot load
- No dual-version loading (active + loading)
Required Implementation:
type SnapshotLoader struct {
loaders map[SnapshotFormat]FormatLoader
}
type FormatLoader interface {
LoadVertices(s3Path string, partition *Partition) error
LoadEdges(s3Path string, partition *Partition) error
}
// Implementations:
// - ParquetLoader (Apache Arrow)
// - ProtobufLoader (zero-copy mmap)
// - JSONLinesLoader
Acceptance Criteria:
- Parquet loader using Apache Arrow
- Protobuf loader with memory-mapped files
- JSON Lines loader
- Parallel loading coordinator (1000 workers)
- WAL replay integration for consistency
- Dual-version partition loading (active + loading)
- Atomic swap after load complete
- Unit tests: Load 1M vertex snapshot
- Benchmark: <60 seconds for 210 TB (1000 workers)
Effort: 3 weeks
Gap 2.3: S3 Multi-Tier Caching
What's Missing:
- No S3 request cost optimization
- No CloudFront CDN integration
- No proxy-local Varnish cache
- No S3 Express One Zone for hot cold partitions
- No batch S3 reads
Required Implementation:
type CacheManager struct {
localCache *VarnishCache // Tier 0: 100 GB SSD per proxy
cdnCache *CloudFrontCache // Tier 1: Global CDN
s3Express *S3ExpressClient // Tier 2: Hot cold partitions
s3Standard *S3StandardClient // Tier 3: Batch reads
}
func (cm *CacheManager) FetchPartition(partitionID string) (*Partition, error) {
// Try local → CDN → S3 Express → S3 Standard
}
Acceptance Criteria:
- Varnish HTTP cache integration (per-proxy)
- CloudFront CDN configuration
- S3 Express One Zone client
- Batch S3 read prefetching (10 partitions per request)
- Cache invalidation on partition update
- Unit tests: Cache tier fallback
- Benchmark: 72% cache hit rate (avoid S3)
Effort: 2 weeks
Phase 3: Graph Query Infrastructure (4-5 weeks)
Gap 3.1: Multi-Level Index Infrastructure
What's Missing:
- No index abstraction layer
- No partition-level indexes (hash, range, inverted, edge)
- No proxy-level aggregated indexes
- No cluster-level directory indexes
- No Bloom filter cascade
- No index schema versioning
Required Implementation:
type PartitionIndex struct {
HashIndexes map[string]*PropertyHashIndex
RangeIndexes map[string]*PropertyRangeIndex
InvertedIndexes map[string]*InvertedIndex
EdgeIndexes map[string]*EdgeIndex
BloomFilter *bloom.BloomFilter
SchemaVersion int32 // Current: 5
}
type IndexBuilder struct {
partition *Partition
}
func (ib *IndexBuilder) BuildOnline() error // Online index construction
func (ib *IndexBuilder) UpdateIncremental(walOp *WALOperation) error
Acceptance Criteria:
- Partition index protobuf definitions
- Hash index (exact match): O(1) lookup
- Range index (buckets + Roaring bitmaps): O(log N) lookup
- Inverted index (property value → vertex IDs)
- Edge index (outgoing/incoming adjacency lists)
- Bloom filter for negative lookups
- Index schema versioning (v1 → v5 migration)
- Online index building without blocking queries
- Incremental WAL-based index updates
- Unit tests: 1M vertex index construction
- Benchmark: <1 ms index lookup, <10 GB index size per partition
Effort: 3 weeks
Gap 3.2: Gremlin Query Parser and Planner
What's Missing:
- No Gremlin AST parser
- No query decomposition (no stages)
- No cost-based optimizer
- No partition pruning strategy
- No selectivity estimation
Required Implementation:
type GremlinParser struct {
// Parse Gremlin query string to AST
}
type QueryPlanner struct {
indexManager *IndexManager
costModel *CostModel
}
func (qp *QueryPlanner) Parse(gremlinQuery string) (*QueryAST, error)
func (qp *QueryPlanner) Analyze(ast *QueryAST) (*QueryPlan, error)
func (qp *QueryPlanner) Optimize(plan *QueryPlan) (*QueryPlan, error)
Acceptance Criteria:
- Gremlin query string parser (Apache TinkerPop subset)
- Query AST representation (V, E, hasLabel, has, out, in, limit, etc.)
- Query decomposition into stages
- Cost-based optimizer with selectivity estimation
- Partition pruning using multi-level indexes
- Filter ordering optimization (most selective first)
- Unit tests: Parse 100 common Gremlin queries
- Benchmark: <10 ms query planning
Effort: 3 weeks
Gap 3.3: Distributed Query Execution Engine
What's Missing:
- No distributed query coordinator
- No partition executor
- No cross-partition traversal coordinator
- No result streaming
- No adaptive parallelism
- No query resource limits
Required Implementation:
type QueryCoordinator struct {
planner *QueryPlanner
partitionMgr *PartitionManager
}
type PartitionExecutor struct {
partition *Partition
indexes *PartitionIndex
}
func (qc *QueryCoordinator) ExecuteGremlin(
ctx context.Context,
gremlinQuery string,
principal *Principal,
) (*ResultStream, error)
func (pe *PartitionExecutor) ExecuteStep(
ctx context.Context,
step *GremlinStep,
inputVertices []*Vertex,
) ([]*Vertex, error)
Acceptance Criteria:
- Query coordinator (fan-out to partitions)
- Partition executor (local query execution)
- Cross-partition traversal coordinator
- Result streaming with backpressure
- Adaptive parallelism (1-1000 workers)
- Query resource limits (memory, timeout, fan-out, depth)
- Circuit breaker for runaway queries
- Unit tests: Execute 2-hop traversal across 100 partitions
- Benchmark: <1 second for 1M vertex query
Effort: 3 weeks
Phase 4: Authorization and Observability (3-4 weeks)
Gap 4.1: Label-Based Access Control (LBAC)
What's Missing:
- No security label support on vertices/edges
- No principal clearance model
- No authorization policy engine
- No batch authorization with bitmaps
- No traversal filtering
Required Implementation:
type AuthorizationManager struct {
policy *AuthorizationPolicy
bitmapCache *AuthBitmapCache
auditLogger *AuditLogger
}
func (am *AuthorizationManager) CanAccessVertex(
ctx *AuthorizationContext,
vertex *Vertex,
) (bool, error)
func (am *AuthorizationManager) FilterVerticesBatch(
principal *Principal,
vertices []*Vertex,
) ([]*Vertex, error) // Batch authorization with bitmaps
Acceptance Criteria:
- Security label protobuf definitions
- Principal clearance model
- Authorization policy evaluation (<100 μs per vertex)
- Hierarchical wildcard matching (org:acme:**)
- Batch authorization with Roaring bitmaps
- Partition-level authorization bitmap cache
- Traversal filtering (auto-inject authz filters)
- Unit tests: Authorize 1M vertices
- Benchmark: 1.1 ms for 1M vertex batch authorization
Effort: 2 weeks
Gap 4.2: Audit Logging Infrastructure
What's Missing:
- No audit event definitions
- No Kafka-based audit log sink
- No intelligent sampling (1% base, 100% sensitive)
- No compliance query support
- No audit log retention policies
Required Implementation:
type AuditLogger struct {
kafkaProducer *kafka.Producer
sampler *ComplianceSampler
}
type ComplianceSampler struct {
baseSampleRate float64 // 0.01 = 1%
alwaysLog []string // ['pii', 'confidential', 'financial']
}
func (al *AuditLogger) LogAccess(ctx *AuthorizationContext, vertex *Vertex)
func (al *AuditLogger) LogDenial(ctx *AuthorizationContext, vertex *Vertex, reason string)
Acceptance Criteria:
- Audit event protobuf definitions
- Kafka producer for audit events
- Intelligent sampling (1% base, 100% sensitive)
- Compliance rules (SOC 2, GDPR, HIPAA)
- Audit log retention (hot: 7d, warm: 30d, cold: 90d)
- Unit tests: 10M events/sec sampling
- Benchmark: <10 μs audit log overhead
Effort: 1 week
Gap 4.3: Distributed Tracing and Observability
What's Missing:
- No OpenTelemetry integration
- No distributed tracing across 1000 nodes
- No slow query logging
- No query timeline visualization
- No EXPLAIN plan for queries
Required Implementation:
type QueryTracer struct {
tracer trace.Tracer // OpenTelemetry
}
func (qt *QueryTracer) TraceQueryExecution(
ctx context.Context,
query string,
) (*QueryTimeline, error)
type QueryTimeline struct {
QueryID string
TotalTime time.Duration
Stages []*StageTimeline
Bottlenecks []Bottleneck
}
Acceptance Criteria:
- OpenTelemetry SDK integration
- Distributed trace context propagation
- Query timeline capture (per stage, per partition)
- Slow query logging (threshold: 5 seconds)
- EXPLAIN plan implementation
- SignOz/Jaeger trace visualization
- Prometheus metrics (query latency, partition execution time)
- Unit tests: Trace 3-hop query across 100 partitions
- Benchmark: <100 μs tracing overhead
Effort: 2 weeks
Phase 5: Graph-Specific Features (4-6 weeks, after foundations)
Gap 5.1: Super-Node Handling
What's Missing:
- No vertex degree classification (normal/hub/super/mega)
- No sampling strategies (random, top-K, HyperLogLog)
- No circuit breaker for high-degree vertices
- No Gremlin
.sample()and.approximate()extensions
Required Implementation:
type SuperNodeCircuitBreaker struct {
DegreeThreshold int64 // 100k neighbors = super-node
AutoSample bool
DefaultSampleSize int // 10k samples
}
func (scb *SuperNodeCircuitBreaker) CheckDegree(vertexID string) (int64, VertexClass)
func (scb *SuperNodeCircuitBreaker) SampleNeighbors(vertexID string, size int) ([]*Vertex, error)
Acceptance Criteria:
- Vertex degree classification (based on out-degree)
- Random sampling strategy (reservoir sampling)
- Top-K sampling (by property: engagement, recency)
- HyperLogLog cardinality estimation (0.8% error)
- Circuit breaker for queries to super-nodes
- Gremlin
.sample(N)extension - Gremlin
.approximate()extension - Unit tests: Sample 100M neighbors to 10k
- Benchmark: <100 ms super-node sampling
Effort: 2 weeks
Gap 5.2: Dynamic Partition Rebalancing
What's Missing:
- No partition migration without downtime
- No dual-read during migration
- No rebalancing coordinator
- No partition copy/verify/swap
Required Implementation:
type RebalancingCoordinator struct {
sourceProxy string
targetProxy string
}
func (rc *RebalancingCoordinator) MigratePartition(
partitionID string,
targetProxy string,
) error {
// 1. Copy partition to target
// 2. Dual-read (source + target)
// 3. Verify consistency
// 4. Update routing table
// 5. Delete source
}
Acceptance Criteria:
- Partition copy (source → target)
- Dual-read during migration
- Consistency verification (checksum)
- Routing table update (atomic swap)
- Source partition cleanup
- Zero downtime guarantee
- Unit tests: Migrate 64 partitions
- Benchmark: <10 seconds per partition (opaque IDs)
Effort: 2 weeks
Implementation Roadmap
Phase 1: Foundations (4-6 weeks)
Deliverables:
- Hierarchical partition registry
- Distributed routing table
- Distributed coordination (etcd)
- Distributed WAL (Kafka)
Milestone: Can route queries to correct partition using hierarchical IDs
Phase 2: Storage (4-5 weeks)
Deliverables:
- Hot/cold/warm storage tier management
- Snapshot loading infrastructure
- S3 multi-tier caching
Milestone: Can load 1M vertex snapshot from S3 and serve queries from hot/cold tiers
Phase 3: Query Engine (4-5 weeks)
Deliverables:
- Multi-level index infrastructure
- Gremlin query parser and planner
- Distributed query execution engine
Milestone: Can execute Gremlin queries across 100 partitions with partition pruning
Phase 4: Security and Observability (3-4 weeks)
Deliverables:
- Label-based access control
- Audit logging infrastructure
- Distributed tracing
Milestone: Can authorize queries with vertex-level labels and audit access
Phase 5: Graph Features (4-6 weeks)
Deliverables:
- Super-node handling
- Dynamic partition rebalancing
Milestone: Can handle celebrity vertices (100M degree) and rebalance partitions without downtime
Total Timeline: 19-26 weeks (4.75-6.5 months)
Risk Assessment
High-Risk Dependencies
Risk 1: Distributed Coordination Complexity
- Likelihood: High
- Impact: Critical
- Mitigation: Use etcd (proven) instead of building Raft from scratch
- Fallback: Start with single-coordinator (not HA) for prototyping
Risk 2: WAL Replay Consistency
- Likelihood: Medium
- Impact: Critical
- Mitigation: Comprehensive WAL replay tests with simulated failures
- Fallback: Disable snapshot loading until WAL replay is proven
Risk 3: S3 Request Cost Explosion
- Likelihood: High (identified in RFC-059)
- Impact: High ($1M/year without mitigation)
- Mitigation: Implement multi-tier caching in Phase 2 (mandatory)
- Fallback: N/A - caching is non-negotiable at 100B scale
Risk 4: Index Size Explosion
- Likelihood: Medium
- Impact: High (16 TB indexes cluster-wide)
- Mitigation: Roaring bitmap compression, Bloom filter optimization
- Fallback: Reduce indexed properties to top 10 most queried
Risk 5: Query Resource Exhaustion
- Likelihood: High (celebrity super-nodes)
- Impact: Critical (cluster-wide OOM)
- Mitigation: Circuit breaker + sampling (Phase 5, but prototype in Phase 3)
- Fallback: Hard-code
.limit(10000)on all traversals during development
Medium-Risk Dependencies
Risk 6: Gremlin Compatibility
- Likelihood: Medium
- Impact: Medium
- Mitigation: Implement TinkerPop test suite subset
- Fallback: Document unsupported Gremlin steps
Risk 7: Authorization Performance
- Likelihood: Low (bitmap approach proven in RFC-061)
- Impact: Medium
- Mitigation: Benchmark early in Phase 4
- Fallback: Reduce clearance check frequency (sample 10% of queries)
Testing Strategy
Unit Test Coverage Targets
Phase 1: 90% coverage (foundations must be solid)
- Partition registry: 95%
- Routing table: 90%
- WAL producer/consumer: 95%
Phase 2: 85% coverage
- Storage tier management: 85%
- Snapshot loaders: 80%
Phase 3: 80% coverage
- Index construction: 85%
- Query planner: 80%
- Query executor: 75%
Phase 4: 85% coverage
- Authorization: 90%
- Audit logging: 80%
Phase 5: 75% coverage
- Super-node handling: 75%
- Rebalancing: 80%
Integration Test Requirements
Critical Integration Tests:
-
End-to-End Query Test (Phase 3 milestone):
- Load 1M vertex graph
- Execute Gremlin query:
g.V().has('city', 'SF').out('FOLLOWS').limit(100) - Verify: Query completes in <1 second
- Verify: Correct 100 results returned
-
Snapshot Load + WAL Replay Test (Phase 2 milestone):
- Load 1M vertex snapshot
- Inject 10k WAL operations during load
- Verify: All WAL operations applied to loaded snapshot
- Verify: No data loss
-
Authorization + Query Test (Phase 4 milestone):
- Create graph with 3 organizations (org:acme, org:widget, org:globex)
- Principal with clearance:
['org:acme'] - Execute query:
g.V().hasLabel('User') - Verify: Only org:acme users returned
-
Super-Node Handling Test (Phase 5 milestone):
- Create vertex with 100M neighbors
- Execute query:
g.V('celebrity').out('FOLLOWS') - Verify: Circuit breaker triggers sampling
- Verify: Query returns 10k sampled neighbors (not 100M)
- Verify: Query completes in <1 second
Performance Benchmarks
Critical Benchmarks:
- Partition ID parse: <100 ns
- Routing table lookup (cold): <1 μs
- Routing table lookup (hot): <10 ns
- Index lookup: <1 ms
- Query planning: <10 ms
- Authorization check (single vertex): <100 μs
- Batch authorization (1M vertices): <1.1 ms
- WAL write latency: <5 ms
Success Criteria
Phase 1 Success:
- ✅ Route 1M queries to correct partition using hierarchical IDs
- ✅ WAL write throughput: 10k ops/sec per partition